A User Manual

of

IDEAL

Intrinsically Disordered proteins with Extensive Annotations and Literature

IDEAL, Intrinsically Disordered proteins with Extensive Annotations and Literature (http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/), is a collection of knowledge on experimentally verified intrinsically disordered proteins. IDEAL contains manual annotations by curators on intrinsically disordered regions, interaction regions to other molecules, post-translational modification sites, references, and structural domain assignments.

IDEAL development team
Satoshi Fukuchi, Ph. D. Maebashi Institute of Technology
Motonori Ota, Ph. D. Nagoya University

Ideal-admin@force.cs.is.nagoya-u.ac.jp
1) Top page

User can find proteins in interest by the search tool [1]. User can select one of “Full text”, “Uniprot accession”, “protein name”, and “PDB id” categories. The search tool is also available from the “Search” button [3].

Another way to access IDEAL entries is to open the entry list by clicking “Browse” [2].

IDEAL also provides the BLAST search [4]. User can input an amino acid sequence to find the homologs in IDEAL.

All of the data in IDEAL is available in the XML format [5].

The logo, IDEAL [6], is the link to the top page. This header (blue bar) always locates at the top of any pages in IDEAL.
2) NODE and EDGE

IDEAL refers to an entry (protein) as a NODE, and an interaction of two entries (PPI) as an EDGE, preparing NODE pages as well as EDGE pages. The former contains the detailed information for an IDP. The latter shows a structural complex of the entry and its binding partner. The NODE pages can be linked by the EDGE pages to compose PPI networks. An example of the PPI networks is shown below. The networks can be available from the entry list, each of NODE pages, or EDGE pages.
3) The entry (NODE) list

The list tabulates all of the entries in the descending order by the IID (default). IID is labeled on each protein, starting from IID0001 for human proteins, IID5001 for other eukaryotic proteins, and IID9001 for proteins of the remaining organisms including viruses. IID can be clickable to present each entry.

User can sort the list by clicking the items in the header [7]. The column ProS shows presence or absence of the protean segment, which is IDRs with ability of structural transformation. The Network links to the PPI network map, which contains the NODE entry.
3) **NODE page**

Summary of the annotated regions

This is an example of a NODE page.

The identifier, IID, the protein name, the source organism, and the link to Uniprot are listed [8]. The annotated regions, functional regions, and domain assignments are presented color bars.

The amino acid sequence in the FASTA format and the information in the XML format are available at [9] and [10], respectively. The network map is linked by [11].

Two color bars [12] and [13] summarize the order/disorder annotations. The "at least rule" bar [13] shows the summary based on the "at least rule". The "at least rule" assigns "order" ("disorder") to a region if the region was annotated as ordered (disordered) at least once. When the annotation is inconsistent, the region is annotated as conflict.

The "majority rule" bar [12] shows the summary by the "majority rule". The "majority rule" assigns "order" or "disorder" to a region according to the majority decision of all evidences.
How to see the regions annotated.
Some of the bars in the chart are click-able to show the detailed information.

[A] shows the breakdown of the “at least rule”, which appears by clicking the “at least rule” bar. The break down of “at least rule” includes two bars. The first and the second bars correspond to the “at least” ordered regions, and the “at least” disordered regions, respectively.

[B] shows the break down of the “majority rule”, where all of the annotated ordered/disordered regions are presented. PDB entries in this field are clustered, and magenta bars are clickable to present clustered regions [C]. Clustering threshold is described below.

Clustering PDB
We constructed clusters of almost equivalent PDB entries, employing biological units. In the comparison of two complexes, they were firstly divided into subunits. When two subunits (a subunit pair) taken from each complex show more than 70% sequence identity, or their gap sites in the alignment are less than 7, the subunit pair is considered equivalent. Note that the latter condition is applied to compare short segments. When all subunits pairs in two complexes are equivalent, and the interacting-subunit pairs are the same, the complexes are considered equivalent, and should be clustered. Based on this rule, we conducted a single-linkage clustering, and obtained clusters of protein complexes. Monomers were also clustered in the same manner.

IID00039 Catenin beta-1 (Homo sapiens) P35222
Details in the annotation.

[i] The Seq button presents the FASTA formatted sequence high-lighting the corresponding region. Structured/unstructured status, region stat/end, and oligomeric state follow. When binding partners exist, IID or uniprot accession is presented. The Complex button is a link to the EDGE page containing the protein complex of this protein and the partner [ii]. The magenta bar shows detailed annotation clustered [C]. Red and blue represent disordered and ordered regions. “Evidence” shows the experimental data for the annotation together with experimental method, PDB identifiers with chain ID, and “Reference” linking to PubMed [iii].
The protean segment (ProS)

The section [14] shows protean segments, **ProS**. One of the reasons why IDPs have drawn much attention is attributed to the phenomenon so-called coupled folding and binding, where a short flexible segment can bind to its binding partner with forming a specific structure to act as a molecular recognition element. IDEAL explicitly annotates these regions as *protean segments*.

We defined three categories for ProS, verified ProS, possible ProS and predicted ProS. A verified ProS is defined as the sequence, which has both evidences of disordered in an isolated state and of ordered in a binding state with a partner molecule. A possible ProS is defined as the sequence, which only has an evidence of ordered in a binding state, but is thought to be a ProS from circumstantial evidences, for example disorder evidence in homologs, even though it has no evidence of disordered in an isolated state. A predicted ProS is a new category introduced from the IDEAL version 20/Nov/2017. A predicted ProS is defined as the sequence, which only has an evidence of ordered in a binding state, but is thought to be disordered in an isolated state by manual inspections and the results of several disorder-prediction tools (DICHOT, Mobi, P2D² etc.). When the binding partner exists in IDEAL, a link to the EDGE page is presented [i].

The green bars in the ProS section can expand by a click to show the ordered and disordered regions accounting for the ProS [D]. In the case of “possible ProS” and “predicted ProS”, only a ordered region is presented. The clustering results are adopted in the ProS presentation. In this case, C and D chains of PDB, 3diw are clustered, being presented in a single green bar.
Miscellaneous information from UniProt.

Below the ProS section, miscellaneous information such as modification sites from Uniprot is summarized [13]. Each bar is crick-able to see the details [E].
Prediction section.

IDEAL provide the Experiment section and the prediction section. The prediction section presents information based on experimental evidences, whereas the prediction section presents prediction results such as disorder/order prediction by DICHOT, SCOP domain assignments, and Pfam domain assignments [F].

IID00039 Catenin beta-1 (Homo sapiens) P35222
Each bar is a crick-able to show the details. [G] shows DICHOT prediction result. Predicted ordered and disordered regions are presented by blue and red bars. Cryptic domain is domains, which are predicted to be structural domains but their 3D structures have not be known.

[H] and [I] present SCOP and Pfam prediction by HMM. In the Panel [H], the line shows the domain ID (PDB ID and domain number), the assigned region, the e-value, the SCOP concise classification strings with the link to SCOP, and the description of the domain. In the panel [I], each line shows the Pfam ID with the link to Pfam, the assigned region, the e-value, and the description of the domain.
3) **EDGE page**

How to access EDGE pages

You can access EDGE pages from a edge in a PPI map [i], or an arrow in a NODE page [ii]. Arrows linked to EDGE pages can be found by clicking the majority rule bar or in the ProS section.
Details in the EDGE pages.

This is an example of the EDGE pages. Edge pages provide structural complexes of an IDEAL entry (NODE) and its binding partner. In this case, the complex of catenin beta-1 and transcription factor 7-like 1-A is shown. The structure is displayed by the J-mol applet [i], in which you can rotate, zoom, and other operations. The cartoon is colored in the same color shown in [J], where the corresponding regions are also presented. [ii] and [iii] are the links to each NODE entry. PDB entries are clustered (see the clustering PDB section), and Structure pair selector [iv] enable one to select a protein complex displayed. By clicking the Network button [v], you can find the PPI network, to which this protein complex belongs.

CRYSTAL STRUCTURE OF THE XTFC3-CBD/BETA-CATENIN

<table>
<thead>
<tr>
<th>Biological unit</th>
<th>Structure Pair Selector :</th>
<th>Structure Pair Selector :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catenin beta-1</td>
<td>IID00039 (Region 133-664) [ii]</td>
<td>IID50010 (Region 1-61)[iii]</td>
</tr>
<tr>
<td></td>
<td>Transcription factor 7-like 1-A</td>
<td>Transcription factor 7-like 1-A</td>
</tr>
<tr>
<td></td>
<td>[i]</td>
<td>[j]</td>
</tr>
</tbody>
</table>